
SOFTWAREHMODELING STUDIES. VOLUME 11. THE POLYNOMIAL MEASURE OF--ETCCU)

U NAX SIN RUSTON F30b02- -C-0057

7ADA0
0 OYEHI

NTO E OKBOKY

/ /

SIiEEEEDC-RhE-13hOL hEN

MENEEEM~~h

__RADC-TR81-1 83, Vol 11 (of four)
"'' Final Technical Reprt
S July 1981

SSOFTWARE MODELING STUDIES
STHE POLYNOMIAL MEASURE OF COMPLEXITY

SPolytechnic Institute of Now York

Henry Ruston

APPROVED FOR PUBLIC RELESE; DISTRIBUTION UNLIMITED

r~taEECTEf
~OCT6 19 1j

ROME AIR DEVELOPMENT CENTER
S Air Force Systems Command
WA. Griffiss Air Force Base, New York 13441

Z4I

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-183, Vol II (of three) has been reviewed and is approved for
publication.

APPROVED: 6--
ROCCO F. IUORNO
Proj ect Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER R ooo ?"

JOHN P. BUSS
' - Acting Chief, Plans Office

Di rtribution/__
Availability

Codes

Avail and/or

D p Special

If your addresi has changed or if you wish to be removed from the RADC
miling list, or if the addressee is no longer employed by your organization,
please notify RADC. (ISID riffiss AFB NY 13441. This will assist .us in
mintaininl a current w 1ling list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("len Dt. Entelred)

REPORT DOCUMENTATION PAGE READ ISTRUCTONS• BEFORE COMPLETING FORM

I. REPORT NUMBER l * G VTACCESION NO. 3. RECIPIENT"S CATALOG NUMBER

RADC-TR-81-183, Vol II (of four) D-
4 TITLE (nd Subtitle) S. TYPE O#- REPORT &"PEAODCOVItaD

SOFTWARE MODELING STUDIES V / -,Final Technical Report.
THE POLYNOMIAL MEASURE OF COMPLEXITY January 78- October 80

6.. PRPIDRNftNG OG. APORT NUMCU

N/A
7. AUTHOR(*) B. CONTRACT OR GRANT NUMBER(s)

Henry Ruston / F30602-78-C-0057

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA A WORK UJNIT NUMBERS

Polytechnic Institute of New York
N W-MF R

333 Jay Street / 2304J401

Brooklyn NY 11201
,0

,,. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (ISLE) July 1981

Griffiss AFB NY 13441 13 NUMBEROFPAGES
• 60

16. MONITORING AGENCY NAME & ADDRESS(i dilferent from ContiSLUd Office) IS. SECURITY CLASS. (of this report)

Same UNCLASSIFIED

ISD. DECLASSIFICATION/IDOWNGRADING
NIASCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebetrict entered it Block 20, Ii different from Reportl)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Rocco F. luorno (ISIE)

19. KEY WORDS (Continue on reveree side Ji neceeeamy end tdentifly by block number)

Control Flow Flowcharts

Cyclomatic Measure Program Path

Program Structure Cyclomatic Complexity

Polynomial Measure

2 ABSTRACT (CoZntlnue on reveree side it neceseary ed Identify by block number)

A new measure of software complexity is introduced, one which describes a

flow chart by a polynomial. This measure takes both the elements of a

flo* chart and its structure into account. Rules are given for obtaining

the polynomials for various types of flow charts. The polynomial complexit

measure can be used to compare alter'ate software designs and to divide a

computer program into modules to obtain a minimal overall complexity. A

comparison is made of this measure with several known complexity measures.

DD , jAN,) 1473 EOITION OF I NOV 63 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When D81e Entered)

TABLE OF CONTENTS

PAGE

1.0 Introduction 1

2.0 The State of the Art - A Brief Review 1
2.1 Complexity Based Upon Features of the Program 1
2.2 Complexity Based Upon Operator and Operand

Counts 1
2.3 Complexity as the Difficulty Experienced in

Understanding a Piece of SY;tware 2
2.4 Control Flow Complexity 2

2.4.1 The Cyclomatic Complexity Measure 2
2.4.2 Extended Cyclomatic Measures 2
2.4.3 Maximal Intersection Number 3
2.4.4 The "Knots" Complexity 3
2.4.5 A Comparison of Measures of Control

Flow Complexity 3

3.0 Why is the Program Structure Important? 3

4.0 The Polynomial Measure of Complexity 4

5.0 Obtaining the Polynomial from the Flowchart -

Rules and Examples 4

6.0 Unstructured Programs 13

7.0 Representation of Loops 20

8.0 The CASE Statement 23

9.0 Equivalent Flowcharts 23
9.1 Definition and Examples 23
9.2 Realization of the Polynomial with Fewest

Deciders 27
9.3 The Deciders Needed for Additive Partitioning 30

10.0 Applications of the Measure 31
10.1 Cyclomatic Complexity 31
10.2 Number of Program Paths 32

11.0 Modular Programs 32

12.0 Assessment of the Polynomial Complexity Measure 37

13.0 Summary 37

14.0 References 42

Appendix 43

-I-

_-r ~ - . . -" -'; L .; .= -

LIST OF FIGURES

PAGE

Fig. 1. Two different connections of three deciders 5
a. A four-tests connection 5
b. An eight-tests connection 5

Fig. 2. A decider described by x 6

Fig. 3. An x2 connection 6

Fig. 4. An x+1 connection 7

Fig. 5. A 2x connection 7

Fig. 6. An x2 +x connection 8

Fig. 7. Simplified representations of deciders 9
a. Simplified representation of a decider 9
b. An x2 connection 9

Fig. 8. Simplified representation of Fig. 4 9

Fig. 9. Manipulations on the flowchart of Fig. 8 10

Fig. 10. The 2x connection of Fig. 5 redrawn 10

Fig. 11. Flowchart described by p,(x) + p2 (x) 11

Fig. 12. Flowchart described by pl(x) p 2 (x) 11

Fig. 13. Basic elements of a flowchart 13
a. The "1I" element 13
b. The "x" element 13

Fig. 14. An x2+3x+2 connection realized by series sequence
of x+1 and x+2 13

Fig. 15. An x2 +1 connection realized by paralleling
x 2 and 1 14

Fig. 16. An x2+x connection realized by paralleling
x2 and x 14

Fig. 17. Flowchart for an unstructured program 15

Fig. 18. Conversion of an unstructured program to a
structured one 15

LIST OF FIGURES (cont'd.)
PAGE

Fig. 19. Flowchart for the program segment of the second
example 17

Fig. 20. Conversion of the unstructured flowchart of
Fig. 19 to a structured one 18

Fig. 21. A flowchart for the third example 18

Fig. 22. Simplified flowchart and its conversion to
structured form 19

Fig. 23. A flowchart equivalent to the one of Fig. 21 19

Fig. 24. The DOWHILE element 21

Fig. 25. The conversion of loop to an equivalent loopless
flowchart 21

a. Original loop 21
b. Splitting the node 21
c. Equivalent loopless flowchart 21

Fig. 26. Reduced conversions of a loop 22
a. The original loop 22
b. Complete conversion 22
c. Reduced conversion (described by x+1) 22

Fig. 27. Two consecutive loops and their equivalent
flowchart 22
a. Two consecutive loops 22
b. Equivalent flowchart 22

Fig. 28. A nested loop and its equivalent flowchart 24
a. A nested loop 24
b. Replacement of the inner loop by x+1 24
c. Equivalent flowchart 24

Fig. 29. A multiple selector and its equivalent flowchart 24
a. A multiple selector 24
b. Equivalent flowchart 24

Fig. 30. An x 2 +x connection realized by paralleling
x 2 and x 26

Fig. 31. x 2 +2x+3 realized as additions of
(x2) + (x) + (x+3) 28

-iii-

LIST OF FIGURES (cont'd.)

PAGE

Fig. 32. x 2 +2x+3 realixed as x(x+2)+3 29

Fig. 33. Sequential connection of two flowcharts, showing
m*n total paths 33

Fig. 34. Flowchart of Fig. 32 with the module x shown
separately 35
a. Flowchart of Fig. 32 without the x multiplier 35
b. Flowchart representing x 35

Fig. 35. Flowchart of Fig. 31 with the module x2 shown
separately 36
a. Flowchart of Fig. 31 without the IX2 part 36
b. Flowchart representing x 2 36

Fig. 36. Flowcharts for the seven programs 38
a. P13 1B 38
b. P13-1A 38
c. P12-7 38
d. PI3-2A 38
e. P13-C 38
f. P9 5 39
g. P1-8 6 40

Fig. Al. The Flowchart of Fig. 31 with more details shown 44

Fig. A2. The Flowchart of Fig. 32 with more details shown 45

i

. - r -.-=- , - .. . -, -- - * :. . . ,' - "' -_ .

LIST OF FIGURES (cont'd.)
PAGE

Fig. 19. Flowchart for the program segment uf the second
example 17

Fig. 20. Conversion of the unstructured flowchart of
Fig. 19 to a structured one 18

Fig. 21. A flowchart for the third example 18

Fig. 22. Simplified flowchart and its conversion to

structured form 19

Fig. 23. A flowchart equivalent to the one of Fig. 21 19

Fig. 24. The DOWHILE element 21

Fig. 25. The conversion of loop to an equivalent loopless
flowchart 21

a. Original loop 21
b. Splitting the node 21
c. Equivalent loopless flowchart 21

Fig. 26. Reduced conversions of a loop 22
a. The original loop 22
b. Complete conversion 22
c. Reduced conversion (described by x+1) 22

Fig. 27. Two consecutive loops and their equivalent
flowchart 22

a. Two consecutive loops 22
b. Equivalent flowchart 22

Fig. 28. A nested loop and its equivalent flowchart 24
a. A nested loop 24
b. Replacement of the inner loop by x+1 24
c. Equivalent flowchart 24

Fig. 29. A multiple selector and its equivalent flowchart 24
a. A multiple selector 24
b. Equivalent flowchart 24

Fig. 30. An x 2 +x connection realized by paralleling
x2 and x 26

Fig. 31. x 2 +2x+3 realized as additions of
(x 2) + (x) + (x+3) 28

-iii-

... j J

LIST OF FIGURES (cont'd.)

PAGE

Fig. 32. x 2 +2x+3 realixed as x(x+2)+3 29

Fig. 33. Sequential connection of two flowcharts, showing
m-n total paths 33

Fig. 34. Flowchart of Fig. 32 with the module x shown
separately 35
a. Flowchart of Fig. 32 without the x multiplier 35
b. Flowchart representing x 35

Fig. 35. Flowchart of Fig. 31 with the module x 2 shown
separately 36
a. Flowchart of Fig. 31 without the), 2 part 36
b. Flowchart representing x 2 36

Fig. 36. Flowcharts for the seven programs 38
a. P13 1B 38
b. P13-1A 38
c. P12-7 38
d. P13-2A 38
e. P13-C 38
f. P9 5 39
g. P18 6 40

Fig. Al. The Flowchart of Fig. 31 with more details shown 44

Fig. A2. The Flowchart of Fig. 32 with more details shown 45

-iv-

ABSTRACT

A new measure of complexity is introduced, one which describes a flow-
chart by a polynomial. This measure takes both the elements of the flow chart
and its structure into account.

Rules are given for obtaining the polynomials for various flowcharts, such
as structured, unstructured, with loops, and with simple or multiple selectors
(i.e., CASE statements). The polynomial measure allows the comparison of
alternate designs and tells how to divide a program into modules for minimal
overall complexity. The measure also gives the number of path tests and
bounds on cyclomatic complexity. Finally a comparison is made of this measure
with several other popular complexity measures.

-V--

1.0 INTRODUCTION

A problem of interest in software engineering is the measuring of program
complexity.

Complexity is a fuzzy and an ill defined concept, generally meaning that
the program is "complicated" [1]. It is perceived that it is this "complicaition"
which reduces a programmer's productivity from say 20 statements/day on job
A to just 5 statements/day on job B. We perceive that it is the higher
complexity nf job B which accounts for this diminished productivity.

An accepted measure of complexity will allow to compare programs. One
important application could be the measurement of complexities of alternate
designs and the selection of the design with the lowest complexity.

There have been several attempts to quantify precisely the notion Df
complexity. Typically a countable property of a program is identified, and the
count is defined as the complexity [1]. The control flow, in particular, has
been a subject of extensive scrutiny. One example of such a measure is the
cyclomatic number [2] counting the number of regions in a graph, and related
to the number of deciders in the program.

The polynomial measure introduced here also arises from the properties of
the control flow. It is quantitative, objective, and relatively simple to obtain.
It tells about the structure of a program, and in fact allows the construction of
a flowchart from the measure. It is related to the testing effort. Because it is
the testing which consumes most labor, a measure related to testing reflects
the total labor needed to produce the program.

2.0 THE STATE OF THE ART - A BRIEF REVIEW

Several measures of complexity have been introduced in the recent lit-
erature. We will briefly review several of the measures and their derivatives.

2.1 Complexity Based Upon Features of the Program [3].
Such measure counts the number of certain features of a program (for

example, the number of IFs), and compares them with the number of same
features in a "reference" program. The reference program is to be either

given in an installation or obtained by averaging a group of programs.
Different users may obtain different complexity measures by this technique,
and as stated the measure only records the number of features and not their
role in the program structure.

2.2 Complexity Based Upon Operator and Operand Counts

Halstead [4] derived several measures from the counts of distinct oper-
ators and operands in a program, and from the frequencies of each operator
and each operand. He obtained an expression for the size of the implementing
algorithm (called the program volume), and for the total number of mental
discriminations needed to generate the program (called the program effort).
Similar results were obtained by Shooman and Laemmel [5] in their study of
Zipf's laws of natural languages.

-I-

2.3 Complexity as the Difficulty Experienced in Understanding a Piece
of Software [6,7].

This complexity, also referred as psychological complexity, is viewed as
a separate area from the quantitative computational complexity. Curtis et al.
[6] describe experiments to determine which software characteristics affect
understanding.

2.4 Control Flow Complexity

The geometry of the control flow graph has been studied by several
workers. This graph has twin advantages over the program itself: (1) it
displays the control flow graphically and thus more clearly than the program
does, and (2) omits the particulars of the implementing algorithm, thus
reducing the level of detail. It is believed by many (including this author)
that "the secret of complexity" resides in the control flow graph, ready to
be detected by a sufficiently clever detective. Up to date the researchers
studied a countable property of the control graph and used the resulting
number as measure of complexity.

2.4.1 The Cyclomatic Comipie.ity M_easur e [2].

The cyclomatic measure gives -he complexity as e-nr2p: wtr, e is the
number of edges, n the rumber cl rxodles and p the number r, connected
components (i.e.. the number of flowcharts). For example, a program with
two called subroutines (requiring one flowchart for the program and two
flowcharts for the subroutines) having 13 total edges and 13 total nodes has

the cyclomatic complexity

V = 13 - 13 4 2*3 = 6

For single-flowchart programs a simplification leads to V = n l, where n
is the number of decisions. Geometrically the cyclomatic complexity can be
interpreted as the number of regions formed by the control flow graph.

2.4.2 Extended Cyclomatic Measures.

Myers [8] takes into account the additional complexity of compound
conditions. His measure replaces the cyclomatic number by 2 numbers, with
the first number being the cyclomatic number as before, and the second
number being the number of conditions plus one. Then for example, the
statement,

IF X>3 & Y<4 THEN...
ELSE...

has the cyclometric complexity of 2 (because n=1 and p=l) and the extended
complexity of 2:3 (because there are 2 conditions).

Basili and Reiter [9] examined four variations in determining cyclomatic
complexity, involving from different weighting of CASE statements and com-
pound predicates. The first variation is the original cyclomatic number. In
the second variation each condition in a compound predicate contributes a
unit to the cyclomatic number. In the third variation a compound condition
still counts as a single unit, but each CASE statement of n alternatives

-2-

contributes floor[log 2(n)] units' to the cyclomatic number (in the first 2
variations such a CASE statement contributes n units to the cyclomatic
number). In the fourth variation each condition in a compound predicate is
counted and the CASE statement contributes logarithmically as in the fourth
variation.

2.4.3 Maximal Intersection Number (MIN) [101.

This measure is derived from the control graph by drawing a line
through it and counting the maximal number of intersections (MIN). If the
graph is made up of substructures in sequence, this number is obtained as
the sum of MINS of all subparts - 2*number of subparts + 2.

2.4.4 The "Knots" Complexity [11].

Here we count the intersections (i.e., knots) of the control graph
flowlines. Since structured programs have no inter'sections, they have zero
knots. Hence, the knots are a measure of unstructuredness rather than
complexity.

2.4.5 A Comparison of Measures of Control Flow Complexity [12]

In a recent article a comparison was made of three measures, the
Halstead program effort, the cyclomatic, and the knots. The authors (A.L.
Baker and S.H. Zweben) list several weaknesses of the knots. They con-
clude that single number characterization is inadequate, and thus more
research is needed to capture the control flow complexity.

3.0 WHY IS THE PROGRAM STRUCTURE IMPORTANT?

Observe that the measures just reviewed count a property of the con-
trol flow geometry. The cyclomatic counts regions, the MIN counts maximal
possible intersections, the knots counts intersections of flowlines. None of
these measures take the program structure into account. For example, in
the cyclometric measure V=n+l, only the number of deciders matters, and not
how they are connected.

To see that connection of the deciders, that is, the structure of the
program, has an important influence on complexity we have drawn in Fig. I
two different connections of 3 deciders. Since a major part of program
effort goes into testing, we argue that a program complexity should increase
with test effort. To test all paths of the program segment of Fig. 1(a),
four tests are needed to cover the four conditions

A, AB, A1C, ABiC

The program segment of Fig. 1(b) has 8 paths. Their traversal requires
the selection of eight test inputs to satisfy the eight conditons

ABC, ABC, ABC, ABC, ABC, ABC, AIC, ABC

and thus more test effort than the one of Fig la.

'floor(x) signifies the largest integer not exceeding x

-3-

4.0 THE POLYNOMIAL MEASURE OF COMPLEXITY

The two segments of Fig. 1 lead to the conclusions:

a. each decider has 2 paths

b. the sequential connection of two deciders leads to 22 paths

* c. more generally, the sequential connection of n deciders leads to 2
paths

d. the parallel connection of 2 deciders results in 2+1 or 3 paths

e. the parallel connection of n deciders results in n+1 paths

We propose to denote a single decider by the variable x, as shown in
Fig. 2. Then the sequential connection of two deciders is denoted by x 2

, (see Fig. 3), and more generally, the sequential connection of n deciders by

xn The power of n indicates the multiplicative nature of the program
paths, created by such a connection. Thus, for example, the decidr con-
nection Fig. 3 has 22 program paths, while such a sequential connectio-, of n

deciders gives rise to 2n paths.

Consider next the connection of Fig 4. This connection add:-; only one
path to the x decider, and can be described by x+1. It is obvious now that
a combination of the two basic connections of Figures 3 and 4 gives rise to
polynomial expressions. As an example, Fig. 5 portrays a 2x connection,
while Fig. 6 describes an x(x+l) or x 2 +x situation.

These figures can be simplified by replacing each decider by a node
and all sequential statements (shown by a rectangular box in the figures) by
just a flowline. Fig. 7 portrays the x and x 2 situations. Similarly, the x+1
connection of Fig. 4 simplifies to the one shown in Fig. 8.

5.0 OBTAINING THE POLYNOMIAL FROM THE FLOWCHART - RULES AND
EXAMPLES

Consider again the simplified flowchart of Fig. 8. If the left flowline is
drawn on the right, we obtain the equivalent representations, shown in Fig.
9, all portraying the x+1 connection.

Fig. 5 can be redrawn as shown in Fig. 10, showing the addition of the
two x deciders. Note that the addition requires an additional decider (that
is, an additional node). More generally, if there are two flowcharts de-
scribed by the polynomials p 1 (x) and p 2 (x), then the parallel connection of
these two flowcharts (shown in Fig. 11) is described by p 1 (x) + p 2 (x).

The rules for obtaining a polynomial from a flowchart can now be formu-
lated. These are:

1. A flowchart composed from two parallel flowcharts (see Fig. 11) is
described by the sum of the polynomials for each component flow-
chart.

-4-

T rT

AF

Fig. l(a) A FOUR-TESTS Fig. l(b) AN EIGHT-TESTS
CONNECTION CONNECTION

FIG. 1 TWO DIFFERENT CONNECTIONS OF THREE DECIDERS

-5-

FIG. 2 A DECIDER DESCRIBED BY x

FIG. 3 AN x 2 CONNECTION

-6-

I' '

A

FIG. 4 AN x+l CONNECTION

FIG. 5 A 2x CONNECTION

-7-

FIG 6 TNx CNET

F -8-

.. ;. -- - - _- L -.. -~ i . --- -- ° -'

FIG. 7(a) FIG. 7(b)
SIMPLIFIED AN x 2 CONNECTION
REPRESENTATION OF
A DECIDER

FIG. 7 SIMPLIFIED REPRESENTATIONS OF DECIDERS

FIG. 8 SIMPLIFIED REPRESENTATION OF FIG. 4

-9-

FIG. 9 MANIPULATIONS ON THE FLOWCHART OF FIG. 8

FIG. 10 THE 2x CONNECTION OF FIG. 5 REDRAWN

-10-

P(X) IP M)

FIG. 11 FLOWCHART DESCRIBED BY p1 (x) + P2 (X)

Pi (X)l

FIG. 12 FLOWCHART DESCRIBED BY Pj(x) P2 (X)

2. A flowchart composed from two sequential flowcharts is described
by the product of the polynomials for each component flowchart.
This situation is portrayed in Fig. 12.

3. The basic elements of a flowchart are a flowline (characterized by
1) and a decider (characterized by x), as shown in Fig. 13.

With these rules we shall obtain polynomials for several examples. For
the flowchart of Fig. 14 we have the sequence of x+1 and x+2. Hence this
flowchart is described by (x+l)(x+2) or x2 +3x+2. For the flowchart of Fig.
15, x is paralleled with 1 giving x+1. For the flowchart of Fig. 16, x 2 is
paralleled with x giving x 2 +x.

6.0 UNSTRUCTURED PROGRAMS

Up to now all the examples led to structured programs with the de-
scribing polynomial obtained from inspection of the flowchart. We will now
illustrate how to obtain the polynomial for unstructured programs.

Observe that all unstructured program can be converted to a structured
one by tracing the path with GO TOs, eliminating the GO TOs, and duplicat-
ing the code. As an example, consider the flowchart of Fig. 17 representing
an unstructed program. Note that the conversion shown in Fig. 18 trans-
lates into the PL/I program segments:

IF C1 THEN DO;
S1;
IF C2 THEN DO;

S2;
L: S3;
END;

ELSE S5;
END;

ELSE DO;
S4;
GO TO L;

END;

for the unstructured flowchart and

IF C1 THEN DO;
S1;
IF C2 THEN DO;

S2;
S3;

END;
ELSE S5;

END;
ELSE DO;

S4;
S3;

END;

-12-

.-.

FIG. 13(a) THE "1" ELEMENT FIG. 13(b) THE "x" ELEMENT

FIG. 13 BASIC ELEMENTS OF A FLOWCHART

FIG. 14 AN x2 + 3x + 2 CONNECTION REALIZED BY SERIES

SEQUENCE OF x+l AND x+2

-13-

FIG. 15 AN X2 + 1 CONNECTION REALIZED BY PARALLELING X2

AND I

FIG. 16 AN x2 + x CONNECTION REALIZED BY PARALLELING x 2

AND x

-14-

FIG. 17 FLOWCHART FOR AN UNSTRUCTURED PROGRAM

C1 F C1 F C, F

I SI SI

S4 - F S4 =

L$S2 2 S

L5 S3 J

/S3 S5 S3Is3S

S5

FIG. 18 CONVERSION OF AN UNSTRUCTURED PROGRAM TO A
STRUCTURED ONE

-15-

for the structured flowchart. Intuitively, these two segments have the same
complexity and are both described by the same polynomial. The inspection
of the last flowchart of Fig. 18 reveals it to be a parallel connection of x
and 1, giving x+1 for the polynomial.

As a second example consider the following PL/I program segment, illus-
trating how to evaluate the complexity of an unstructed code.

IF A=B THEN GO TO LI;
GO TO NO;

LI: IF A=C THEN GO TO L2;
GO TO NO;

L2: PUT LIST ('SUCCESS');
GO TO L3;

NO: PUT LIST ('FAILURE');
L3:

This fragment is flowcharted in Fig. 19. Transformation to a struc-
tured program, shown in Fig. 20, shows it again to be a parallel connection
of x and 1 yielding, as before, the x+1 polynomial.

As a third example, consider the flowchart of Fig. 21. As before, we
want to obtain its polynomial. The simplified flowchart and its conversion to
a structured form are shown in Fig. 22. The polynomial is obtained from
paralleling x+1 and x resulting in 2x+1. The structured flowchart, equiva-
lent to the one of Fig. 21, is shown in Fig. 23.

Incidentally, it may be of interest to contrast the programs for the two
flowcharts of Fig. 21 and 23. For Fig. 21 the program segment (in PL/I)
is:

IF A THEN DO;
S1;

GO TO L;
END;

ELSE IF B THEN S2;
ELSE L: IF C THEN S3;

ELSE S4;

while for Fig. 23 we obtain:

IF A THEN DO;
S1;
IF C THEN S3;

ELSE S4;
END;

ELSE IF B THEN S2;
ELSE IF C THEN S3;

ELSE S4;

which are intuitively of same complexity, as asserted.

We have just illustrated how to obtain the polynomial measure of com-
plex'ty of a structured or unstructured flowchart containing just sequential
statements and deciders. We shall next treat flowcharts containing loops and
CASE statements.

-16-

GO TO Ll

GO TO L2

PUT LIST ('SUCCESS')

~GO TO L3

PUT LIST ('FAILURE'

FIG. 19 FLOWCHART FOR THE PROGRAM SEGMENT OF THE SECOND
EXAMPLE

-17-

FIG. 20 CONVERSION OF THE UNSTRUCTURED FLOWCHART OF
FIG. 19 TO A STRUCTURED ONE

FI. 1 LO CA R F O TE T IDX M L

-18

<> T

FIG. 21 FLOWCHART FOR THE THIRD EXAMPLE

A A

B B

FIG. 22 SIMPLIFIED FLOWCHART AND ITS CONVERSION TO
STRUCTURED FORM

A T

F T s

FIG. 23 A FLOWCHART EQUIVALENT TO THE ONE OF FIG. 21

-19-

&k.

7.0 REPRESENTATION OF LOOPS

Even though any program can be constructed with just sequences and
deciders, such a construction is awkward without loops. Consequently, let
us consider the effect of a loop on the polynomial measure p(x).

The basic representation of a loop is through the DOWHILE element
shown in Fig. 24. We want to convert by geometric manipulations a flow-
chart with loops into a loopless one. Such a manipulation has been sug-
gested by Shooman [13] and involves node splitting as portrayed in Fig. 25.
Since the last flowchart in Fig. 25(c) is the parallel connection of x and 1,
it (and thus the loop) is described by x+1.

The justification for this manipulation lies in the practice of testing a
loop just twice, once for the initial value (of the control variable or control
expression), and then again for the final value (i.e., the value of the con-
trol variable just before exit). Such a reduction in testing is commonplace
to reduce both the volume of test data (which has to be studied) and the
testing cost. For example, the loop:

I=1;
DO WHILE (I<=1000);

I = I+1;
END;

may in practice be tested by:

I = 1;
DO WHILE (I<1000);

f;
I = 1+999;

END;

Another viewpoint also leads to same conclusion. A loop such as the
one in Fig. 26(a) converts generally into many deciders which arp in turn
approximated by just two deciders, as shown in Fig. 26(c). This is justified
by viewing two loops each with the same initial value and body, but with a
different final value as for example,

DO I = 1 TO 2;
f;

END;

and:

DO I = 1 TO 1000;
f;

END;

as being of equal complexity, because they both require the same testing
effort.

We have just established that a loop is described by x+1. Since loops
can be either consecutive or nested, let us next obtain the polynomials for
both these situations.

-20-

FIG. 24 THE DOWHILE ELEMENT

(This element portrays the program segment
Statement;
DC, WHILE (p);

f;

END;)

aaI8 a

(d) ORIGINAL (b) SPLITTING (c) EQUIVALENT
LOOP THE NODE LOOPLESS

FLOWCHART

FIG. 25 THE CONVERSION OF LOOP TO AN EQUIVALENT LOOPLESS
FLOWCHART

-21-

(a) THE (b) COMPLETE (c) REDUCED
SORIGINAL CONVERSION CONVERSION

'IILP (dsrie PbP

f~

(a) TWO CONSECUTIVE LOOPS (b) EQUIVALENT FLOWCHART

FIG. 27 TWO CONSECUTIVE LOOPS AND THEIR EQUIVALENT FLOW-

CHART

-22-

Two consecutive loops are shown in Fig. 27(a). Since each loop is de-
scribed by x+1 and this is a sequential connection of two such x+1 poly-
nomials, the polynomial for both these loops is (x+1) 2 (see Fig. 12). More

generally, n consecutive loops results in the (x+l) n polynomial.

When a loop is nested within another, we have the situation portrayed
in f.g. 28(a). As before, the nested inner loop may be replaced by x+1,
(that is, its polynomial), resulting in the flowchart of Fig. 28(b). But this
flowchart is the same as the one of Fig. 26(a), with f being replaced by
x+1, as shown in Fig. 28(c). This leads to the polynomial p 2 (x) for the
nesting of 2 loops as

p 2 (x) = [(x+1) + 11 (xil) + 1 = (x+2)(x+l) + 1

polynomial
for the first

decider

Again we can generalize to a nesting of n loops and obtain Pn(X)

[Pn-l(X) + 11 Pn-1(x) + 1. Specific examples for n=2,3, and 4 are

p2 (x) = x 2 + 3x + 3

P 3 (X) = (x2+3x+4)(x2 +3x+3) + 1 = x4+6x3+16x 2+21x+13

P 4 (X) = (x4+6x3+16x 2+21x+14)(x 4+6x3 +16x 2 +21x+13) + I

Observe how quickly the polynomial grows with levels of nesting indi-
cating the rapid increase in complexity.

We have just described how to treat loops. We shall next consider the
multiple selectors (i.e., the CASE statement).

8.0 THE CASE STATEMENT

Figure 29(a) portrays a multiple selector implementable by the CASE
statement with 3 cases. Using the node splitting technique as in Fig. 25,
we obtain the equivalent flowchart of Fig. 29(b). This last flowchart is a
parallel connection of the x and 1 elements, yielding x+1. More generally a
CASE statement with n+2 cases is described by x+n.

We have just shown how to characterize a flowchart by a polynomial.
We shall next consider the topic of equivalent flowcharts.

9.0 EQUIVALENT FLOWCHARTS

9.1 Definition and Examples

We will consider two flowcharts to be equivalent if they are character-
ized by the same polynomial. Because a polynomial can generally be parti-
tioned into simpler terms in several ways, the different realizations lead to
equivalent flowcharts.

-23-

X+1

Xi-I

(a) A NESTED (b) REPLACEMENT (c) EQUIVALENT
LOOP OF THE INNER FLOWCHART

LOOP BY x+l

FIG. 28 A NESTED LOOP AND ITS EQUIVALENT FLOWCHART

(a) A MULTIPLE SELECTOR (b) EQUIVALENT FLOWCHART

FIG. 29 A MULTIPLE SELECTOR AND ITS EQUIVALENT FLOWCHART

-24-

To illustrate different realizations consider Fig. 6, portraying the x 2+x
connection. In Fig. 6 the bottom part represents x+1 and the top decider
an x multiplier, resulting in x(x+l) or x2+x. It is also possible to realize
x2 +x by paralleling x 2 and x, as shown in Fig. 30. Note that the first
(i.e., top) decider separates x 2 form x.

Observe that the flowchart of Fig. 30 has one more decider than the
flowchart of Fig. 6. Comparing the program segment for Fig. 30, that is,

IF A THEN IF B THEN Si;
ELSE S2;

ELSE DO;
IF C THEN S3;

ELSE S4;
IF D THEN S5;

ELSE S6;
END;

with the program segment for Fig. 6, i.e.,

IF A THEN Si;
ELSE S2;

IF B THEN IF C THEN S3;
ELSE S4;

ELSE S5;
We ask whether the definition agrees with our intuitive notion of com-

plexity. If analyzing the first segment (for Fig. 30), we deduce that:

S1 is executed for AB

S2 is executed for A19

S3 and S5 are executed for ACD

S3 and S6 are executed for ACI5

S4 and S5 are executed for A(D

S4 and S6 are executed for A XI5

The analysis of the second segment (for Fig. 6) tells that:

S1 and S3 are executed for ABC

S1 and S4 are executed for ABC

S1 and S5 are executed for AB

S2 and S3 are executed for ABC

S2 and S4 are executed for ABC

S2 and S5 are executed for Af3

-25-

,F

c T
F

FIG. 30 AN x 2 +x CONNECTION REALIZED BY PARALLELING x 2 AND x

-26-

which indicates the same testing is needed to verify it as the first segment,
and thus intuitively of the same complexity as the first segments.

An additional example of equivalent flowcharts is shown in Figs. 31 and
32. In Fig. 31 x 2+2x+3 is realized as an additive connection of x 2 , x, and
x+3. We shall call such a partitioning of a polynomial as "additive" parti-
tioning. In Fig. 32 x multiplies x+2 and then 3 is added. We shall call this
second type of partitioning "multiplicative" partitioning. The analysis of
program segments arising from both constructions leads to the conclusion
that both will require the same testing effort and thus have the same com-
plexity (see AppenJ ix).

9.2 Realization of the Polynomial with Fewest Deciders

It is evident from the last 2 examples that additive partitioning leads to
a realization with more deciders than does multiplicative partitioning. As an
example consider the different realizations of x 3 +3x 2 +x+2.

1. Additive partitioning:
x 3 requires 3 deciders

3x 2 requires 3*2+2=8 deciders (2 extra deciders needed to add
X 2 +X

2 +X
2)

x requires 1 decider

X3 +3X 2+x requires 16 deciders (2 additional deciders for the 2
additions)

and finally
x3 +3x 2+x+2 requires 16 deciders (2 deciders for +2)

2. x 2 (x+3) + (x+2) partitioning

x 2 requires 2 deciders

x+3 requires 4 deciders

x 2 (x+3) requires 6 deciders

x+2 requires 3 deciders

x 2 (x+3) + (x+2) requires 10 deciders (one additional decider
for the addition).

3. x(x(x+3)+l) - 2 partitioning

x+3 requires 4 deciders

x(x+3) requires 5 deciders

x(x+3)+l requires 6 deciders

x(x(x+3)+l) requires 7 deciders

x(x(x+3)+l)+2 requires 9 deciders

-27-

~CY)

+x
X 1
Ixx

x

-28-

6LC,

~ ~......

~~1
I I
I I
I I

B I IxI I
I I
I I
L 1

a

I I
I I
I I

I. I
I I
I I
I 1
I I
I I
I I
I I
I I
I I ____ ____

1 I
I I
U - - - - - - - .. i

X+2
FIG. 32 x2+2x+3 REALIZED AS x(x+2)+3

-29-

From this example it can be deduced that a minimal decider realization
of a polynomial will be obtained if the polynomial is expressed in the "nested
from" as in the last partitioning. This is so because no extra deciders are
needed for addition. Then for the general cubic polynomial

a 3 x 3 + a 2 x 2 + alx + a 0 = ao+x(al+x(a 2 +a3 x))

(where obviously all a i are non-negative integers) we need

2a 3 -1 deciders for a 3 x (one decider for each of the a 3 x and a 3 -1
deciders for their additions)

a 2+2a 3 -1 deciders for a 2 +a 3 x

a 2 +2a 3 deciders for x(a 2 +a3 x)

al+a2 +2a 3 deciders for al+x(a 2 +a 3 x)

al+a2 +2a 3 +1 deciders for x(al+x(a 2 +a 3 x))

a o+al+a2 +2a 3 +1 deciders for the polynomial

This result can be generalized with the theorem

Theorem

The minimal decider realization of the polynomial

n k
p(x)= I akx

k=0

requires

n-1 n-]
n-1 + 2 an -1 + ak = n-2 + 2a + I ak (9.1)

k=O n k=0

deciders. This realization is achieved with the polynomial expressed in the

so called "nested form."

9.3 The Deciders Needed for Additive Partitioning

We have just determined the lower bound on deciders realizing a poly-
nomial. Let us now determine the number of deciders needed for additive
partitioning. This will give us an upper bound on the deciders. Consider
again the polynomial a 3 x + a 2 x 2 + ax + a 0 .

a 3 x3 requires 4a 3 1 deciders (a 3 - 1 deciders needed for the
additions

-30-

a2x 2 requires 3a 2 -1 deciders

alx requires 2a, - I deciders
a3x 3+a2x 2+alx requires 4a 3+3a 2+2alx-1 deciders (2 additional de-

ciders needed for the 2 additions)

a 3 x 3+a2x 2+a,+ao requires 4aa+3a 2 +2a 1+ao-I deciders.

Thus in general, the additive realization of the polynomial

n k
p(x) 7 a kx

k=0
requires:

i
Y_ (k+l)ak - 1 (9.2)

k=0

deciders. This is the upper bound on the deciders.

From the results of (9.1) and (9.2) it follows that a polynomial p(x)
may be realized with 7x deciders where

n-i n
n-2 + 2a n + 1 a k < n <_ (k+l) ak - I

k=0 k=0

10.0 APPLICATIONS OF THE MEASURE

10.1 Cyclomatic Complexity

The cyclomatic complexity [2) of a single flowchart (i.e., p=1, meaning
that the program has no procedures) was given as n+l, where n is the num-
ber of deciders. From the preceeding section we have a bound on A. Con-
sequently, a flowchart characterized by the polynomial p(x) has the cyclo-
matic complexity V bounded by

n-I n
n-1 + 2a n + I ak < V < Y_ (k+l)a kk=0 k=O

As an example, the flowchart described by

p(x) = 3x2 + 2x + 1

has the cyclomatic complexity V bounded by

2-1 + 2.3 + 2+1 < V < 3.3 + 2.2 + 1

or

10 < V < 14

-31-

10.2 Number of Program Paths

One of the usual tests of a program is the type 2 test (14]. In such
test each program path is executed at least once. A measure of extent of
such a test (and thus of test effort) is the number of program paths, which
is given by

Number of program paths = p(2)

To see that this is so, consider first the two basic connections of two
flowcharts, parallel and sequential. For the parallel connection (shown in
Fig. 11) the paths just add, hence

Total number of paths = paths in the flowchart described by pl(x)
+ paths in the flowchart described by p 2 (x).

For the sequential connection (shown in Fig. 12), the paths multiply. This
can be noted from Fig. 33, hence,

Total number of paths = (paths in the flowchart described by
pl(x)) (paths in the flowchart described by p 2 (x)).

Since all flowcharts are comprised by either parallel or sequential con-
nection of the two basic elements, the "1", (which has 1 path) and "x"
(which has 2 paths) shown in Fig. 13, the total number of program paths of
a flowchart described by p(x) is indeed p(2).

11.0 MODULAR PROGRAMS

The principal tool in the design of large software system is to divide
the system into smaller units. Such a division intuitively reduces the overall
complexity by allowing us to deal with smaller, less complex "modules." Two
questions may be posed:

1. What effect has the modular division on the polynomial complexity?

and

2. What is the optimum division, that, how should the program be
divided?

Let us consider the first question. Evidently, a program with a single
procedure is represented by a single flowchart, leading to a single poly-
nomial. Similarly, a modular program consists of several procedures (one for
each module), with each procedure represented by a separate flowchart.
Each flowchart is characterized by its own polynomial. The entire modular
program is the sum of the individual polynomials. Thus, for a modular
program with n modules,

n
p(x) = p Pi(x)

i=l

where p.(x) is the polynomial characterizing the flowchart for the ith
module.

-32-

M PATHS
[FLOWCHART DESCRIBED BY
p1 (x)]

N PATHS
[FLOWCHART DESCRIBED BY.... p2(x)l

FIG. 33 SEQUENTIAL CONNECTION OF TWO FLOWCHARTS, SHOWING M-N
TOTAL PATHS

-33-

As an example, consider the flowchart of Fig. 32, with the decider
labeled x removed to a separate flowchart. This situation is shown in Fig.
34. Fig. 34(a) is characterized by (x+2)+3 or x+5. Fig. 15(b) is character-
ized by x. Hence, the entire modular program is characterized by x+5+x or
2x+5, which results in a polynomial of lower complexity than the one charac-
terizing the single flowchart of Fig. 32.

Consider next the flowchart of Fig. 31. We will now replace the two
deciders labeled x2 by a single module. This results in the two flowcharts
portrayed in Fig. 35. The polynomial describing the flowchart of Fig. 35(a)
is (x+l)+(x+3) or 2x+4. The module is represented by x 2 . Hence, the en-
tire modular program is characterized by x 2+2x+4 which is certainly not sim-
pler than the original polynomial x 2+2x+3.

The observation of these two examples leads to the following conclusions:

1. In the first example a multiplicative part was replaced by a mod-
ule. This had the effect of replacing a multiplicative part by an
additive part. In general, if the original polynomial po(x) can be
decomposed into

PO(X) = P1 (X) P2 (x) + P 3 (X)

and P2 (X) is replaced by a module, the new characterization Pn(x)
becomes

Pn(X) = P 1 (x) + P 3 (X) + p 2 (x)

which leads to a polynomial of a lower degree and thus lower com-
plexity.

2. In the second example an additive component was replaced by a
module. If the original polynomial po(x) = p 1 (x) + P 2 (X), we will
let P2 (x) be replaced by a module. This results in two flowcharts,

one characterized by p 1 (x)+l and the other by p2 (x), resulting in

the new overall characterization of

Pn(X) = P 1 (X) + P 2 (X) + 1

and thus of no lower complexity than the original polynomial
pO(x).

The above answers the first question posed in the beginning of this
section, by showing the two possible effects of modular division on poly-
nomial complexity. It also allows to answer the second question, asking how
modules are to be chosen. The answer is that multiplicative terms should be
replaced by modules, because such modularization lowers the degree of the
polynomial p(x). The replacement of additive terms by modules is not rec-
ommended because such modularization does not lead to lower complexity.

-34-

MODULE

FIG. 34(A) FLOWCHART OF FIG. 32 WITHOUT THE x MULTIPLIER

FIG. 34(B) FLOWCHART REPRESENTING x

FIG. 34 FLOWCHART OF FIG. 32 WITH THE MODULE x SHOWN
SEPARATELY

-35-

i I I

t ~
xM+DULE

X+l IX+3

FIG. 35(A) FLOWCHART OF FIG. 31 WITHOUT THE x 2 PART

FIG. 35 (B) FLOWCHART REPRESENTING x 2

FIG. 35 FLOWCHART OF FIG. 31, WITH THE MODULE x2 SHOWN
SEPARATELY

-36-

In Section 9.0 we described the construction of a flowchart from the
polynomial p(x). The construction methods given there resulted in a single
flowchart. Observe that modular realizations give rise to additional con-
struction techniques. The development of such techniques is left to the
future.

12.0 ASSESSMENT OF THE POLYNOMIAL COMPLEXITY MEASURE

A question of interest is: "How does the polynomial measure compare
with the other measures in predicting program complexity?" To answer this
question, seven exercises were selected from a textbook on programming
[15]. For each of these, a program was constructed, debugged, and tested,
and the completion time and number of statements were recorded. The sim-
plified flowcharts were then drawn for the programs, and are shown in Fig.
36. A number n inside a decider indicates a decider with n conditions (and
no number indicates a single condition). The names P13 1B, P13 1A, and so
on, are the -names of the programs (and the exercises-). The results are
tabulated in Table 1 and include the average number of min-ute,_ , ×jended (on
each statement and the four complexity measures: the cyclonat-, Zxtended
(Myers, [8]), MIN, and polynomial. The MIN measure io only Iorined for
loopless flowcharts, thus, only the first 3 programs show this measui e. .Ph
other control flow complexity measures are not shown because the prograns
written for the seven exercises were in PL/I, and hence did not contain the
CASE statement. Thus the third and fourth variations of Basili and Reiter
[91 were of no interest. (The first and second variations are the cyclomatic
and the second number of the extended, respectively.) The knots are not
shown because all programs are structured and hence have no knots.

The table demonstrates that polynomial complexity correlates with the
effort expended on each statement, and does so better than the other meas-
ure (or the number of paths). It is interesting to note that the fifth degree
polynomial with two terms in P13 1C leads to a lower "complexity" than the
fourth degree polynomial with all five terms in P9_5.

13.0 SUMMARY

A new measure of complexity was introduced, one which considers de-
ciders and the way they are connected. The measure is unique and inter-
prets a program flowchart through a polynomial. It was shown that the
measure yields a bound on cyclomatic complexity, and the expected number
of path tests. The measure allows the comparison of alternate designs and
the choice of the design of minimal complexity. A further advantage of the
measure is its application to modular designs; the measure tells which modu-
larization contributes to a reduction in over complexity.

The report concludes with a comparison between the polynomial measure
and several other popular measures.

-37-

26

22

(d) P13_2A (e) P13_C

FIG. 36 FLOWCHARTS FOR THE SEVEN PROGRAMS

-38-

CL

-39-

(g) P18_6

FIG. 36 FLOWCHARTS
FOR THE
SEVEN
PROGRAMS

-40-(cont'd.)

w Lf) w m 0 0 v

4-4-

0 44-

x

+ +

+t- 4-+
N' + M*

>4+ + X vI +

04C x x x

4-14

Lo' W4 a)~o C-

to 0~(~ (
09 . ,-l r C

r- Lf2 w0C- 0 4

w c

a)f N. w-o o 0

tm I I I ~I I un
0 "'~ m I c
&.4 f '4 -4

14.0 REFERENCES

1. L.A. Belady, "On Software Complexity," Proceedings of the Work-
shop on Quantitative Software Models, IEEE, pp. 90-94; 1979.

2. T.J. McCabe, "A Complexity Measure," IEEE Trans. on Software
Eng., vol. SE-2, no. 4, pp. 308-320; December 1976.

3. J.C. Zolnowski and D.B. Simmons, "Measuring Program Complexity,"
Proceedings of the 1977 Fall COMPCON, IEEE, pp. 366-340; 1977.

4. M.H. Halstead, "Elements of Software Science," Chapters 3 and 8,
Elsevier North-Holland, Inc., New York, NY; 1977.

5. M.L. Shooman and A. Laemmel, "Statistical Theory of Computer
Programs-Information Content and Complexity," Proceedings of the
1977 Fall COMPCON, IEEE, pp. 341-347; 1977.

6. B. Curtis, S.B. Sheppard, P. Milliman, M.A. Borst, and T. Love,
"Measuring the Psychological Complexity of Software Maintenance
Tasks with the Halstead and McCabe Metrics," IEEE Trans. on
Software Eng., vol SE-5, no. 2, pp. 95-104; March 1979.

7. B. Curtis, "In Search of Software Complexity," Proceedings of the
Workshop on Quantitative Software Models, IEEE, pp. 95-106; 1979.

8. G.J. Myers, "An Extension to the Cyclomatic Measure of Program
Complexity," SIGPLAN Notices, pp. 61-64; October 1977.

9. V.R. Basili and R.W. Reiter, Jr., "Evaluating Automatable Meas-
ures of Softwa-'e Development," Proceedings of the Workshop on
Quantitative Software Models, IEEE, pp. 107-116; 1979.

10. E.T. Chen, "Program Complexity and Programmer Productivity,"
IEEE Trans. on Software Eng., vol SE-4, no. 3, pp. 187-194; May
1978.

11. M.R. Woodward, M.A. Hennel, and D. Hedley, "A Measure of Con-
trol Flow Complexity in Program Text," IEEE Trans. on Software
Eng., vol. SE-5, no. 1, pp. 45-49; January 1979.

12. A.L. Baker and S.H. Zweben, "A Comparison of Measures of Con-
trol Flow Complexity," IEEE Trans. on Software Eng., vol. SE-6,
no. 6, pp. 506-512; Nov. 1980.

13. M.L. Shooman, "Software Engineering: Reliability, Design Man-
agement," McGraw Hill Book Co., New York, NY, Fig. 4-15; 1981.

14. M. Lipow, "Application of Algebraic Methods to Computer Program
Analysis," Report TRW-55-73-10, TRW Software Series; May 1973.

15. H. Ruston, "Programming with PL/I," McGraw Hill Book Company,
Inc., New York, NY; 1978.

-42-

APPENDIX

We will consider two different flowcharts, characterized by the same
polynomial and investigate their complexities. We will use to this end the
flowcharts of Figures 31 and 32, redrawn with more detail in Figures A.1
and A.2.

The program segment describing Fig. A.1 is

IF A THEN IF B THEN IF C THEN IF D THEN IF E THEN Si;
ELSE S2;

ELSE S3;
ELSE S4;

ELSE S5;
ELSE IF F THEN IF G THEN S6;

ELSE S7;
ELSE DO;

IF H THEN S8;
ELSE S9;

IF I THEN S10;
ELSE Sl1;

END;

The flowchart of Fig. A.2 is described by

IF A THEN SI;
ELSE IF B THEN S2;

ELSE IF C THEN S3;
ELSE DO;

IF D THEN S4;
ELSE S5;

IF E THEN
IF F THEN IF G THEN S6;

ELSE S7;
ELSE S8;

ELSE S9;
END;

To compare the complexities of these two program segments we will con-
sider the conditions and the resulting execj.aons.

-43-

w

LL. 0
in x1+

Ix I

0

-44-

APPENDIX

We will consider two different flowcharts, characterized by the same
polynomial and investigate their complexities. We will use to this end theflowcharts of Figures 31 and 32, redrawn with more detail in Figures A.1

and A. 2.

The program segment describing Fig. A. 1 is

IF A THEN IF B THEN IF C THEN IF D THEN IF E THEN Si;
ELSE S2;

ELSE S3;
ELSE S4;

ELSE S5;
ELSE IF F THEN IF G THEN S6;

ELSE S7;
ELSE DO;

IF H THEN S8;
ELSE S9;

IF I THEN S10;
ELSE S11;

END;

The flowchart of Fig. A.2 is described by

IF A THEN SI;
ELSE IF B THEN S2;

ELSE IF C THEN S3;
ELSE DO;

IF D THEN S4;
ELSE S5;

IF E THEN
IF F THEN IF G THEN S6;

ELSE S7;
ELSE S8;

ELSE S9;
END;

To compare the complexities of these two program segments we will con-
sider the conditions and the resulting executions.

-43-

X 0

LL Lu I

U. x

-44-

F

B Tr

F

c T

F Ix
S4

I F
T3 SZ SF - - - - - - - -F

IG

I3

IX 2
IG.A2 T EFO C A T O I .3 ITH M R E AL H W

I-45

For Fig. A. 1, we obtain the listing

Condition Execution of

ABCDE Si

ABCDF S2
ABCI5 S3

AB(S4ABC $5

A9G S6

AFG S7

APHI S8 & SIO
APHI S8 & Sil

AFHI S9 & S10

AM S9 & S1l
For Fig. A.2 the listing is

Condition Execution of

A S1

AB S2

ABC S3

A BCDEFG S4 and S6

Af3CDEFd S4 and S7

AfCDEf S4 and S8

AffCDf S4 and S9
AI3CIEFG S5 and S6
A IEF S5 and S7
ABlgCIEF S5 and S8

A13-CISf S5 and S9

-46-

which leads to the following observations:

1. Both flowcharts result in the same number of distinct actions (this
being 11 for both flowcharts).

2. The flowchart of Fig. A.1 is realized with 13 statements, the flow-
chart of Fig. A.2 with 11 statements.

3. The total number of individual conditions to be satisfied for the
execution of the 11 distinct actions in Fig. A.1 is 41 or 41/11 =
3.73 average conditions/actions. To execute the 11 actions in Fig.
A.2 we must satisfy a total of 56 individual conditions, or 56/11 =
5.09 average conditions/actions.

This leads to the conclusion that from the first observation both flow-
charts have the same complexity. The second observation tells that the
flowchart of Fig. A.1 requires a program segment 181- [i.e., 13-1i)*100/11]
longer than the flowchart of Fig. A.2. The third obseivation tells that the
testing of all actions will require 1.36 (i.e., 5.09-3.73) more conditions per
action. Thus, Fig. A.1 is more complex than Fig. A.2 from one viewpoint
and less complex from another viewpoint, but equally complex from The im-
portant comparison of distinct actions. The overall conclusicn is theri that
both flowcharts exhibit the same complexity.

-47-

